Robust Best Approximation with Interpolation Constraints under Ellipsoidal Uncertainty: Strong Duality and Nonsmooth Newton Methods
نویسندگان
چکیده
In this paper we present a duality approach for finding a robust best approximation from a set involving interpolation constraints and uncertain inequality constraints in a Hilbert space that is immunized against the data uncertainty using a nonsmooth Newton method. Following the framework of robust optimization, we assume that the input data of the inequality constraints are not known exactly while they belong to an ellipsoidal data uncertainty set. We first show that finding a robust best approximation is equivalent to solving a second-order cone complementarity problem by establishing a strong duality theorem under a strict feasibility condition. We then examine a nonsmooth version of Newton’s method and present their convergence analysis in terms of the metric regularity condition.
منابع مشابه
Lagrange Multiplier Characterizations of Robust Best Approximations under Constraint Data Uncertainty∗
In this paper we explain how to characterize the best approximation to any x in a Hilbert space X from the set C ∩ {x ∈ X : gi(x) ≤ 0, i = 1, 2, · · · ,m} in the face of data uncertainty in the convex constraints, gi(x) ≤ 0, i = 1, 2, · · · ,m, where C is a closed convex subset of X. Following the robust optimization approach, we establish Lagrange multiplier characterizations of the robust con...
متن کاملSufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملRobust Discrete Optimization and Downside Risk Measures
We propose methods for robust discrete optimization in which the objective function has cost components that are subject to independent and bounded perturbations. Motivated by risk management practice, we approximate the problem of optimization of VaR, a widely used downside risk measure by introducing four approximating models that origininate in robust optimization. We show that all four mode...
متن کاملA uniform approximation method to solve absolute value equation
In this paper, we propose a parametric uniform approximation method to solve NP-hard absolute value equations. For this, we uniformly approximate absolute value in such a way that the nonsmooth absolute value equation can be formulated as a smooth nonlinear equation. By solving the parametric smooth nonlinear equation using Newton method, for a decreasing sequence of parameters, we can get the ...
متن کامل